欢迎访问买球官网!

news


新闻中心

陶瓷基复合材料发展(陶瓷基复合材料发展规划)

时间:2024-08-07

“韧劲十足”的纤维增强陶瓷基复合材料

而采用高强度、高弹性模量的纤维与陶瓷基体复合可阻止裂纹的扩展,从而得到具有优良韧性的纤维增强陶瓷基复合材料,既可以保留陶瓷材料的优点,又能克服掉陶瓷材料脆性高的弱点,是提高陶瓷韧性和可靠性的有效方法。

为什么要生产陶瓷基复合材料?

陶瓷基复合材料是为了达到某些性能指标,将两种以上陶瓷或陶瓷与非陶瓷材料混合在一起制成的新型材料,使其具有两者的综合性能,主要是为了改善陶瓷的韧性,防止使用时出现突然断裂。常见的方法是将两种陶瓷物质(如氧化铝和氮化硅)的粉末混合后烧制成高韧性材料,或者制成陶瓷纤维强化复合材料。

本题的考点为陶瓷基复合材料。制作陶瓷基复合材料的主要目的是增加韧性。适用陶瓷基复合材料的基体材料主要有氧化物陶瓷基体(氧化铝陶瓷基体和氧化锆陶瓷基体等)和非氧化物陶瓷基体(氮化硅陶瓷基体、氮化铝陶瓷基体、碳化硅陶瓷基体及石英玻璃)。

瓷基复合材料可以由任何一种陶瓷成分来构成,一般碳和碳纤维也被认为是陶瓷基复合材料。陶瓷基复合材料又称为多相复合陶瓷或复相陶瓷,这一名称指出了从陶瓷基体到陶瓷基复合材料的秘诀,即在陶瓷基体中引入第二相材料,使之增强、增韧。

陶瓷基复合材料有什么作用?

陶瓷基复合材料除了用于航空航天部件,还可用于滑动构件、发动机部件和刀件具等。法国用长纤维增强碳化硅复合材料作为超高速列车的制动机,其优异的摩擦磨损特性是传统制动件无法相比的。陶瓷基复合材料以优异的耐高温和耐磨损性能取胜于其他复合材料,但由于价格昂贵使其应用受到一定限制。

耐高温:陶瓷基复合材料的基体多为陶瓷材料,这些材料具有很高的熔点,因此可以在高温环境下保持优良的稳定性和强度,此外,陶瓷基复合材料中引入的增强相也可以提高材料的耐高温性能。

除了用于航空航天部件,陶瓷基复合材料还可用于滑动构件、发动机部件和刀件具等。在汽车工业领域,先进复合材料制成的制件可以代替同样性能的钢制件,而且比原本的钢制件减重70%左右,工艺上亦可一次成型。此外,先进复合材料在化工、纺织业、医疗和精密仪器等领域也发挥着不可估量的作用。

陶瓷基复合材料是一种结合了陶瓷材料的高温耐受性和纤维增强塑料的韧性的材料。这种材料能在高达1200℃至1900℃的温度下使用,这使得它在航空航天领域有着重要的应用。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

简述陶瓷基复合材料的制备工艺过程,成型工艺有哪几种?各自的特点是什么...

料浆浸渍与热压烧结法:此法涉及将可烧结的基体粉末与连续纤维通过浸渍工艺结合,形成坯件,随后在高温和压力下烧结,形成陶瓷基复合材料。 直接氧化沉积法:该法最初用于制备氧化铝/铝复合材料,并扩展至连续纤维增强的氧化物陶瓷基复合材料。

直接氧化沉积法 直接氧化沉积法 最早被用于制备A12O3/A1复合材料,后推广用于制备连续纤维增强氧化物陶瓷基复合材料。LANXIDE法工艺原理为:将连续纤维预成型坯件置于熔融金属上面,因毛细管作用,熔融金属向预成型体中渗透。

反应熔体浸渗法 反应熔体浸渗法是一种制备陶瓷基复合材料的方法。该方法通过将熔融的陶瓷材料浸渍在纤维增强体上,然后在冷却过程中发生化学反应,形成陶瓷基复合材料。 CVI+PIP综合工艺 CVI+PIP综合工艺是将化学气相渗透法(CVI)和先驱体转化法(PIP)相结合的一种制备陶瓷基复合材料的方法。

包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。

陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

复合材料是指通过高科技设备对具有不同性能的材料进行组合和优化,最终形成一种全新的材料。根据不同的基材,复合材料可分为两类,一类是金属复合材料,例如铝合金,镁合金等,另一类是非金属复合材料,例如玻璃纤维,石棉纤维等。复合材料的特点:高比强度和_比模量。

Copyright © 2021-2024 Corporation. All rights reserved. 四川买球有限公司 版权所有